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Abstract. Multi-View Modeling (MVM) is a common modeling practice that
advocates the use of multiple, different and yet related models to represent the
needs of diverse stakeholders. Of crucial importance in MVM is consistency
checking — the description and verification of semantic relationships amongst
the views. Variability is the capacity of software artifacts to vary, and its effec-
tive management is a core tenet of the research in Software Product Lines (SPL).
MVM has proven useful for developing one-of-a-kind systems; however, to reap
the potential benefits of MVM in SPL it is vital to provide consistency checking
mechanisms that cope with variability. In this paper we describe how to address
this need by applying Safe Composition — the guarantee that all programs of a
product line are type safe. We evaluate our approach with a case study.

1 Introduction

Extensive experience in software architecture and design has shown the importance and
necessity of using multiple, different, and yet related models to represent the perspec-
tives and information needs of diverse system stakeholders throughout the development
process. This practice is known as Multi-View Modeling (MVM)[1,2,3]. UML is an ex-
ample of MVM where the different types of diagrams can represent distinct views of
the same system.

MVM intrinsically requires consistency checking whereby all views must adhere
to consistency rules that describe the semantic relationships amongst their elements
[1,2,3]. A classical example of a consistency rule in UML is that if a sequence diagram
has a message m targeting an object of class C, then the class diagram of class C must
contain method m.

Variability is the capacity of software artifacts to vary [4], and its effective man-
agement is a core tenet of the research in Software Product Lines (SPL) [5,6,7]. On
one hand, the significant benefits of applying SPL practices have been extensively doc-
umented and corroborated both in academia and industry [6,8,7]. On the other, MVM
has proven useful for the development of one-of-a-kind systems. Several research works
have added variability into UML modeling because of its extensive use in industry and
academia [9,10,11]. However, the effective use of MVM in SPL demands mechanisms
for consistency checking that cope with variability. To the best of our knowledge, this
issue has not been extensively researched.



In this paper we propose Safe composition [12], the guarantee that all programs that
can be composed according to the product line domain constraints are type safe (i.e.
they do not have undefined references to structural elements such as classes, methods
or fields), as a technique for consistency checking of MVM with variability. To achieve
the same guarantee, conventional consistency checking approaches without support for
variability would have to be applied to the models of each single member of a product
line which is unfeasible even in small SPL as the number of potential feature combina-
tions can grow exponentially.

We use a representative set of UML consistency rules and a feature composition
technique to illustrate how safe composition can be used for consistency checking.
However, other modeling artifacts, consistency rules and composition techniques can
be used. Furthermore, we define a categorization scheme of consistency rules accord-
ing to the number of artifact types they use and their relation with the composition
technique. This categorization enables the identification of conditions where living with
inconsistencies is acceptable (and even expected) and others where inconsistencies are
not tolerable. To evaluate our approach, we developed a prototype tool and applied it to
a case study.

2 Running Example

SPL approaches can be broadly categorized in two main groups depending on how
they express variability in software artifacts. In integrative approaches, artifacts con-
tain both the common and variable parts. Building a system means keeping the variable
parts of the desired features in the artifacts while removing those parts belonging to
unselected features [9,13,14]. In compositional approaches, variable parts are encap-
sulated in modular units which are put together according to the features selected for
building a system [15,16,17,18]1. There are several SPL methodologies that advocate a
compositional approach, some of them use multiple views [10,20,15]. To illustrate our
work, in this section we describe the core concepts of the compositional approach and
the example we use throughout the paper.

2.1 Feature Oriented Software Development

Feature Oriented Software Development (FOSD) provides formalisms, methods, lan-
guages and tools for building variable, customizable and extensible software [15]. FOSD
has been successfully used in several case studies [21,22]. FOSD advocates modulariz-
ing features, increments in program functionality [23], as the systems building blocks.
At the heart of FOSD is a feature algebra that drives the (de)composition of software
artifacts [24,16,25,26,27]. A feature module contains all the software artifacts, or parts
thereof, required for implementing the feature. In other words, feature modules capture
the multiple views of a feature.

In FOSD features are composed hierarchically starting from the root element of
the corresponding models. Elements that have the same name and type at the same

1 This classification appears with different names in the literature, for example negative or pos-
itive variability respectively[19].



hierarchical level are composed together, elements that do not have a corresponding
matching element are copied along hierarchically. We illustrate FOSD composition with
our running example as we proceed with the explanation of safe composition in next
section. For further details please consult [16,28,29].

2.2 Video On Demand Example

The running example to illustrate our work is a hypothetical product line of video on
demand systems. In this systems family, a video on demand (VOD) system can record
and/or play videos and can be used with either TV sets or mobile phones. Thus our SPL
example contains five features: VOD, Play, Record, TV, and Mobile. In FOSD,
each feature is implemented in a feature module which contains all the required soft-
ware artifacts for its realization. In our example, we use UML class, sequence and state
diagrams 2. Figure 1 shows the diagrams of the five features.

The diagrams of feature VOD are shown in Figure 1(a). The class diagram con-
sists of three classes: Service, Streamer, and Program. These classes have some
methods, a navigable association going from Service to Streamer, and one from
Streamer to Program. The sequence diagram illustrates a call of method select
in a Service object and a call of method stream from Service to Streamer.
Lastly, the state machine shows two states in which a Service object can be in. After
receiving a select method call a Service object initializes its information. Simi-
larly, after receiving a go method call it starts streaming the video, and finally when it
receives a stop it goes to a final state.

Figure 1(b) shows the diagrams of feature Play. This feature has a new class
Server, and an association manages with class Streamer whose association end
name is handler. The sequence diagram shows a message go from Streamer to
Service objects, and a message play from Service object to itself. Notice here
that message go is not defined in this feature but in feature VOD. The state machine di-
agram shows a new state Frozen with new actions resume and pause, as defined in
the class diagram of this feature. Note again that action go is not defined in this feature
but in feature VOD.

Figures 1(c)-(e) show the diagrams of features Record, TV, and Mobile respec-
tively. Note for instance in feature Record depicted in 1(c) that messages wait is
not a method of class Streamer. A similar case occurs in feature TV whose message
caption is not a method of its class Program.

3 Detecting Inconsistencies with Safe Composition

Safe composition is the guarantee that programs composed from multi-view feature
modules according to the product line domain constraints are type safe, i.e. they do
not have undefined references to structural elements such as classes, methods or fields
[12]. Current research on this topic has mainly focused on source code artifacts, partic-
ularly in FOSD extensions to Java-like languages. As pointed out by Thaker et al., the

2 In practice, FOSD feature modules can contain any number of any artifact type (e.g. code,
script files, grammars, etc.), for further details consult [15].



Fig. 1. Features in VOD SPL.



principles underlying safe composition can be also applied to other artifact types. Our
work shows how safe composition applies to model artifacts by considering consistency
rules that must be met by all composed program models. Safe composition can thus be
used to detect inconsistencies not only on a single view (artifact type) but also amongst
multiple views and most importantly within and across features.

3.1 Safe Composition Principles

Let us start by giving an example of an application of safe composition. Consider feature
Play in Figure 1(b). In this feature, the sequence diagram shows a call to method go
from Streamer to Service. Notice that this method is not defined in the class
diagram of that feature. Safe composition verifies that all valid (according to domain
constraints) combinations of features that include feature Play do also include another
feature where go is defined (implementation constraints).

Safe composition is based on Czarnecki’s et al. observation that implementation
constraints should follow from domain constraints [30]. Let PLf denote the domain
constraints and IMPf denote the implementation constraints of a consistency rule in-
stance. Safe composition uses propositional logic to express and relate these two terms.
Because we are interested in verifying that all members of the product line satisfy a
given implementation constraint, the following formula should not be satisfiable:

¬(PLf ⇒ IMPf) (1)

In case it is satisfiable, it would mean that there is a member of the product line
that does not meet constraint IMPf . By using a satisfiability (SAT) solver, the violating
feature configuration(s) can be identified. This is done for each instance of each imple-
mentation constraint we want to verify. We show next how the propositional formulas
of PLf and IMPf are obtained.

3.2 Obtaining Domain Constraints from Feature Models

Fig. 2. Example of Feature Model

Feature models are a standard way to model the
common and variable features of SPL and their
relationships [31,32]. In these models, features
are depicted as labeled boxes and are connected
to other features to form a tree. A feature can
be classified as: mandatory if it is part of a pro-
gram whenever its parent feature is also part, and
optional if it may or may not be part of a pro-
gram whenever its parent feature is part. Manda-
tory features are denoted with filled circles while
optional features are denoted with empty circles
both at the child end of the feature relations de-
noted with lines. Features can be grouped into:
inclusive-or relation whereby one or more fea-
tures of the group can be selected, and exclusive-or relation where exactly one feature
can be selected. These relations are depicted as filled arcs and empty arcs respectively.



Figure 2 shows the feature model of our SPL of on-demand video recorders and
players. In this hypothetical product line, the root feature VOD provides the basic func-
tionality that the video systems offer. In FOSD, a feature in a feature model closely
corresponds to a feature module. Recall that in our example SPL, a video on demand
(VOD) system have features Record and Play in an inclusive-or relation, meaning
that systems in this product line can: 1) record videos, 2) play videos, 3) record and
play videos. Additionally, in those systems with playing capability, the systems either
have television screens (TV) or screens of mobile devices (Mobile), corresponding to
an exclusive-or relation.

Mapping of Feature Models to Propositional Logic. There exist extensive research
on mapping feature models to propositional logic [33,34]. This mapping is summarized
in Figure 3. Consider now for example the propositional formula for our model in Fig-
ure 2 shown in Equation 2. The first proposition comes from the fact that the root feature
is always selected. The second proposition is the application of the inclusive-or rule for
features Record and Play, while the last two propositions are the application of the
exclusive-or for features TV and Mobile. Thus PLf for our example is:

(V OD ⇔ true )∧
(V OD ⇔ Record ∨ Play )∧
(TV ⇔ ¬Mobile ∧ Play )∧
(Mobile ⇔ ¬TV ∧ Play)

(2)

Fig. 3. Mapping a feature model to propositional logic.



3.3 Using Consistency Rules as Implementation Constraints

Consistency rules describe the semantic relationships that must hold amongst the dif-
ferent elements of the views. Consistency rules can be categorized according to the
number of views they involve [35,36]:

– Intra-view: Exactly one view or artifact type is used by a rule.
– Inter-view: Multiple views or artifact types are used by a rule.

Our extension of safe composition for MVM adds another classification dimension that
depends on the number of features involved:

– Intra-feature: Only one feature is needed to verify a constraint.
– Inter-feature: More than one feature are needed to verify a constraint.

It should be noted here that traditional consistency checking approaches fall into intra-
feature category because they do not address variability issues in their models. Safe
composition, on the other hand, allows us to extend the scope of current consistency
checking approaches to address variability.

Consistency rules are usually specified as well-formedness rules [37], or emerge
as standard best practices in certain domains [38,39]. In our previous work, we devel-
oped UML/Analyzer, a tool that incrementally checks consistency of UML class,
sequence, and state machine diagrams. This tool checks over 30 distinct rules. For our
work on safe composition, we selected seven representative structural rules from this
set. Next we describe in detail each of the selected rules, their categorization, and use
in safe composition with FOSD approach to model composition.

Rule 1. Method parameters should have different names. This rule specifies that in
class diagrams the parameter names of methods in classes or interfaces must be unique.
Clearly, this is an intra-view rule as it uses only class diagram views.

FOSD model composition. In FOSD, methods are matched based on their signature.
This means that if two matching classes with two methods of different signatures are
composed, then both methods are copied along to the result. In other words, FOSD does
not support the addition of new parameters to methods. Thus, rule 1 is also an intra-
feature rule because to validate this constraint it is only necessary to verify the feature
where the method is defined. Because it is an intra-feature rule, safe composition does
not apply as meeting this constraint is independent of how the feature being checked
is composed. Notice however, that if a different composition approach were used that
allows adding new parameters when methods are composed, then this rule would be
classified as inter-feature.

Rule 2. An interface can only contain public operations. This rule specifies that
the methods defined in an interface should have public visibility, i.e. accessible to any
code that references it. Rule 2 can also be categorized as intra-view as it only uses class
diagram views.

FOSD model composition. In FOSD, access modifiers are not composable. Thus,
this rule is also an example of intra-feature rules because it is only required to verify



the feature where the method is defined. Because it is an intra-feature rule, safe compo-
sition does not apply as meeting this constraint is independent of how the feature being
checked is composed. Again, if a different composition approach were used that allows
access modifiers to be composed, then this rule would be categorized as inter-feature.

Inter-feature Consistency Rules and Safe Composition. The properties denoted by
inter-feature consistency rules make use of safe composition for two distinct purposes:
1) to assert the presence of a structural element that a feature requires, or 2) to assert
the exclusion of a structural element that a feature conflicts with. We refer to these two
kinds of rules as requiring and conflicting respectively.

Requiring rules. Let F be a feature that refers a model element e defined in another
feature. For a system program that includes feature F, it must therefore also include
at least one other feature Freqi where element e is defined. This is denoted in the
following expression 3 :

IMPf ≡ F ⇒
⋁

i=1..k

Freqi (3)

By substituting IMPf in Equation 1, we obtain the logical expression that is passed
to the SAT solver. In this case is the conjunction of all the terms of the features that
define an element that feature F requires.

¬(PLf ⇒ IMPf ) ≡ PLf ∧ F
⋀

i=1..k

¬Freqi (4)

When feature F requires an element that is not defined in any other features, that
is expression

⋁
Freqi evaluates to false, it means that such element is not defined

in the entire product line. This situation is clearly an error and renders unnecessary to
verify this constraint with the SAT solver.

Conflicting rules. Let F be a feature that defines a model element e. A feature
Fconfi conflicts with feature F if it has an element d which cannot be present in the
same program where element e is also present. Put in different words, because of the
conflict between elements e and d, if feature F is selected as part of a system program,
then feature Fconfi cannot be selected. The propositional logic expression is thus:

IMPf ≡ F ⇒ ¬(
⋁

i=1..k

Fconfi) (5)

By substituting IMPf in Equation 1, we obtain the logical expression that needs to
be passed to the SAT solver. In this case, they are k disjunctions, one for each feature F
has conflicting elements with. Thus it requires k calls to the SAT solver.

3 For notational simplicity in the rest of the paper, we overload feature terms such as F or Freqi

to mean propositional logic terms and the set of software artifacts. We make the distinctions
explicit when necessary.



¬(PLf ⇒ IMPf ) ≡
⋁

i=1..k

(PLf ∧ F ∧ Fconfi) (6)

In the case where feature F has no conflicts with any other features, that is expres-
sion

⋁
Fconfi evaluates to false, it is thus unnecesary to evaluate this constraint for

element e.

Rule 3. Association ends must have a unique name within the association. This rule
specifies that for any given association the names of its ends must not be repeated.

FOSD model composition. To illustrate this rule please consider features Mobile
and TV in Figure 1(e) and Figure 1(d) respectively. FOSD composition of the corre-
sponding class diagrams dictates to compose association provides between classes
Service and Program because their names are the same and their types (association
between Service and Program) also match. Notice however that the association
end names of class Server are channel and protocol. This name mismatch vio-
lates this rule as the association end of Server has more than one name. This means
that if feature TV is selected then feature Mobile cannot be selected because of this
naming conflict. From this example, for FOSD composition technique, Rule 3 is then
an example of intra-view and inter-feature rule.

Consider now feature Mobile Figure 1(e) feature in Play in Figure 1(b). FOSD
dictates to compose association manages between Server and Streamer because
their matching names and types. The association end of class Streamer is named
handler on both features so no naming conflict arises on this class. The associa-
tion end of class Server is named controller in feature Mobile and it is unde-
fined in feature Play. In FOSD, the composed end name is controller. Therefore,
in the composition of this association there is no conflict between features Play and
Mobile.

Rule 3 is an example of a conflicting rule because of the naming conflicts in the end
names. More formally, and using Equation (5), let F be a feature of the SPL that contains
association assoc between classes A and B with respective association end names
assoc.Aname and assoc.Bname

4. A conflicting feature Fconfi is then defined as
follows:

Fconfi contains association assoc between classes A and B,
and [( F.assoc.Aname ∕=Fconfi.assoc.Aname ∧ F.assoc.Aname ∕=null ∧

Fconfi.assoc.Aname ∕=null ) ∨
( F.assoc.Bname ∕=Fconfi.assoc.Bname ∧ F.assoc.Bname ∕=null ∧
Fconfi.assoc.Bname ∕=null )]

(7)

In words, this condition establishes that two features conflict in an association if they
define non-null names that are different. Applying Equation (5) to the two examples just

4 As notational convention we use qualified names to denote containment of elements and sub-
scripts to refer to their values.



illustrated, we have that feature Mobile conflicts with feature TV but does not conflict
with feature Play. Thus in this example IMPf ≡ Mobile⇒¬TV.

Rule 4. At most one association end may be an aggregation or composition. This
rule specifies that any given association can only have either an aggregation or a com-
position but not both.

FOSD model composition. As an example, consider features TV and Mobile in
Figure 1(d) and Figure 1(e) respectively. Both features have in their class diagrams an
association stores between Program and Server. Notice however that the com-
position lies at different sides of the association. Thus, selecting both features together
violates this rule. Clearly because this rule involves only class diagrams and two fea-
tures it is and example of intra-view and inter-feature rule. Furthermore, it is a conflict-
ing rule because the existence of an aggregation or composition in one feature excludes
the existence of another aggregation or composition at another feature.

More formally, and using Equation (5), let F be a feature of the SPL that contains
association assoc between classes A and B. A conflicting feature Fconfi is then
defined as follows:

Fconfi contains association assoc between classes A and B,
and [(F.assoctype=aggregation ∨F.assoctype=composition )∧
(Fconfi.assoctype=aggregation ∨Fconfi.assoctype=composition )]

(8)

In words, this condition establishes that two features conflict if an association de-
fines either an aggregation or composition in feature F and on the same association but
in feature Fconfi there is either an aggregation or a composition. Applying Equation
(5) give us IMPf ≡ Mobile⇒¬TV.

Rule 5. Message action must be defined as an operation in receiver’s class. This
rule specifies that in a sequence diagram a message action should have a corresponding
operation defined in the class diagram of the message receiver’s class.

FOSD model composition. As an example for this rule, the sequence diagram of
feature Play in Figure 1(b) refers to method go but feature Play does not define it in
its class diagram. Thus, every time that feature Play is selected, another feature that
defines method go must also be selected. In this example, the class diagram of feature
VOD in Figure 1(a) provides such definition and can thus be selected when feature Play
is selected. This rule is then an inter-feature rule, and because it involves class diagrams
and sequence diagrams an inter-view rule. Furthermore, it is a requiring rule because
the existence of a message action demands the existence of a method that defines it in
the target class.

More formally, and using Equation (3), Let F be a feature of the SPL that con-
tains message action msg with receiver’s class Cls. A requiring feature Freqi is then
defined as follows:

Freqi contains method msg in class Cls in a class diagram (9)

In words, this condition establishes that a feature whose sequence diagram refer-
ences a method requires the definition of that method in the class diagram of another
feature. Applying Equation (3) thus give us IMPf ≡ Play⇒VOD.



Rule 6. State machine action must be defined as an operation in owner’s class.
This rule specifies that in a state machine associated to a class the actions should be
operations defined in the class diagram of such class.

FOSD model composition. This rule is similar to Rule 5. Consider now the state
machine diagram of feature Play in Figure 1(b) that has transition method go, but
again it is not defined in the class diagram of this feature. Thus, whenever feature Play
is selected there must be another feature where method go is defined. As we have seen,
this method is defined in feature VOD in Figure 1(a). Because this rule involves class
and state machine diagrams in more that one feature, it is an example of inter-view and
inter-feature rule. Furthermore, it is a requiring rule because the existence of an action
in a state machine diagram requires its definition in another feature’s class diagram.

More formally, and using Equation (3), Let F be a feature of the SPL that contains
a state machine action msg. Let F be a feature module of the SPL that has transition
method msg in state machine of class Cls. A requiring feature Freqi is then defined
as follows:

Freqi contains method msg defined in class Cls (10)

In words, this condition establishes that a feature that has a state machine diagram
that references a method requires the definition of that method in the class diagram of
another feature. Applying Equation (3) thus give us IMPf ≡ Play⇒VOD.

Rule 7. Calling direction of message must match calling direction of association.
This rule specifies that if a sequence diagram has a message going from an object of
class A to an object of class B then in the class diagram the relationship between both
classes should be navigable in that direction.

FOSD model composition. As an example of this rule, consider feature Record in
Figure 1(c) that has message load from Streamer to Program. Notice however that
in this feature the direction of the association between these two classes is the opposite.
Therefore, if feature Record is included there must be another feature that defines
a navigable association from Streamer to Program, in our case feature VOD in
Figure 1(a). Because this rule involves sequence and class diagrams on multiple feature
it is an example of inter-view and inter-feature rule. This rule is requiring because the
existence of a message in the sequence diagram demands the existence of an association
navigable in the direction of the message in a class diagram.

More formally, and using Equation (3), Let F be a feature of the SPL that contains
a message going from an object of class Src to an object of class Tgt. A requiring
feature Freqi is then defined as follows:

Freqi contains navigable association from class Src to class Tgt (11)

Applying Equation (3) thus give us IMPf ≡ Record⇒VOD.

3.4 Analysis

This section summarizes the main insights gained with our application of safe compo-
sition for MVM consistency checking.



Safe composition granularity. Table 1 shows the classification of our rules along
the two dimensions. Rule 1 and Rule 2 highlight the fact that not all consistency rules
are applicable to safe composition. The distinctive characteristic of both rules is that
their level of granularity, method parameter names for Rule 1 and access modifiers for
Rule 2, falls below the granularity level of FOSD composition. In other words, FOSD
composes elements such as methods or classes (coarser granularity) but not their nested
elements (finer granularity). This observation is summarized in the following principle:

Principle of Safe Composition Granularity: Safe composition is applicable to
consistency rules that operate at the granularity level supported by the model

composition mechanism.

Tolerable and intolerable inconsistencies. Our categorization of consistency rules
along two dimensions allows us to further distinguish two types of inconsistencies from
a compositional perspective. We call intolerable inconsistencies those that arise from
violations to rules that are both intra-view and intra-feature because they render fea-
tures unfit for composition. On the other hand, we call tolerable those inconsistencies
arising from violations to inter-feature rules because it is expected that they be fixed by
composition with other features. Finally, it should be noted that in the sample of consis-
tency rules we analyzed there was no rule categorized as inter-view and intra-feature.
In the case of FOSD, this follows in part from the fact that feature composition can add
elements to any views.

Intra-view Inter-view

Intra-feature
Rule 1
Rule 2

Inter-feature
Rule 3 Rule 5
Rule 4 Rule 6

Rule 7
Table 1. Classification of consistency rules

Multi-feature consistency rules. The inter-feature rules we presented involved only
two features. Our consistency checking tool UML/Analyzer uses 34 consistency
rules, out of those there are only two rules that can involve more than two features.
One of such rules checks that circular inheritance does not occur. A solution would be
along the lines proposed by Thaker et al. that would collect the inheritance information
by succesively composing all features and relying on the monotonicity of the compo-
sition detect the circular references [12]. The implementation of this alternative and its
evaluation are part of our future work.

More expressive formal representation and automated rule generation. Currently,
our rules have been manually implemented following their OCL description in relation



to the FOSD approach for model composition. However, we believe that some (if not
all) the implementation could be generated directly from formal rule specifications and
the underlying semantics used for model composition. This is a topic of our future
research.

3.5 Evaluation

We used the Graph Product Line (GPL) [40] as case study for our approach. The fea-
tures of this product line are basic graph algorithms and data structures. A GPL program
is a combination of different algorithms implemented on different data structures. There
are implementations of GPL available in several programming languages. The models
used in our study were manually drawn in the Eclipse UML editor from a Java version
of GPL.

We implemented a prototype tool that uses EMF to parse and gather information
from the EMF models [41], and PicoSAT SAT solver to test for satisfiability [42]. De-
spite of being a short example, we found a total of 298 distinct instances of consistencies
rules. When mapped to propositional logic, the FODA model of GPL consists of 22
domain constraints: 5 mandatory, 2 optional, 2 exclusive-or, 1 inclusive-or, 1 excludes,
and 11 requires. These domain constraints amounted to 39 propositional clauses when
normalized to CNF for use by PicoSAT.

Our experiments showed that the time taken to evaluate consistency rule instances
by the SAT solver was negligible (in the magnitud of nanoseconds when run on an Intel
Core-Duo at 2.8 GHz) as the number of clauses involved and the number of variables
(one for each of the nineteen features) are of relatively small size for what SAT solvers
such as PicoSAT can effectively handle. Though encouraging results, the scalability and
performance of our approach needs to be more extensively validated with more complex
examples of SPL that contain larger models on which to validate more consistency rules
instances. Doing that is part of our future work.

4 Related Work

There is a significant amount of related literature. We focus on the research that most
closely relates to our work and divide them in three categories.

FOSD Model Composition. Our previous work has shown the applicability of an
algebraic representation to describe model composition in use case slices, an Aspect-
Oriented modeling techniques based on UML diagrams [43], when used for SPL mod-
eling [44]. Work by Umapathy developed basic composition of UML diagrams using
XAK, a FOSD composer of XML-based artifacts [45]. Our recent work has shown the
applicability of rewriting technologies for composing UML class diagrams exploiting
the native support of algebraic properties of operators in Maude [28]. Work by Apel et
al. uses superimposition to compose simple UML diagrams that are treated as trees [29].
These technologies are different alternatives to support model composition for FOSD.

Models and Software Product Lines. Product Line UML-based Software engi-
neering (PLUS) [9] is a method that brings FODA ideas to UML. PLUS uses features
throughout the entire product line development process, however their boundaries are



lost in the model diagrams. In other words, most of the diagrams in this approach show
elements that either belong to all the product line or to those of a particular product con-
figuration (i.e. a selected set of features). This is an example of the integrative approach
to variability management. Jayaraman and Whittle have developed a compositional ap-
proach to PLUS whereby models are modularized in feature slices, collections of frag-
ments of UML diagrams, that are composed via graph transformations [10]. To the best
of our knowledge their work does not make any provisions for consistency checking of
the composed feature slices.

Safe Composition and Well-formedness. Work by Czarnecki et. al uses OCL con-
straints to specify and verify well-formedness in model templates. In contrast to our
work, this is an integrative approach for variability modeling [30]. Work by Kästner et
al. follows an integrative approach whereby program elements are annotated with dis-
tinct colors to visually indicate the features they belong to [46]. It enforces two simple
structural rules to guarantee syntactic correctness of the programs derived.

5 Conclusions and Future Work

In this paper we showed how safe composition principles can be applied for MVM
consistency checking in the context of SPL. We used a representative set of UML con-
sistency rules as illustration of our approach. These rules were categorized according to
the number of views and their relation to feature composition. Though our work is pre-
sented in the context of UML and FOSD, our results can be mapped to other modeling
artifacts, constraints, and composition approaches.

We implemented a prototype tool and used it in a case study to evaluate the fea-
sibility of our approach. Performance and scalability were not an issue for this case
study. However, these aspects need further assessment with larger and more complex
product lines as well as considering more consistency rules. Such an assessment is part
of our future work. FOSD composition has been defined as a monotonic operation.
Recent work by Kuhlemann relaxes this requirement to consider non-monotonic com-
position [47]. We plan to investigate alternatives for non-monotonic model composition
along the lines of this work. SAT solvers are just one technology used for consistency
checking. Because of the incremental nature of feature composition, we will explore
the applicability of incremental consistency approaches, like UMLAnalyzer[38,39],
to safe composition .
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